Discretization SFB TRR in Geometry and Dynamics

In the following let k be a field and let $\mathbf{D}^b(k_{\mathbb{R}})$ be the bounded derived category of sheaves on \mathbb{R} with values in the category of k-vector spaces.

1 A Happel Functor

We consider the γ -topology on \mathbb{R}^2 , where $\gamma := [0,\infty) \times (-\infty,0]$. Setting

$$q(a,b):=(a,\infty) imes(-\infty,b)$$

we have the following base

$$\mathcal{B}:=\{q(a,b)\mid a,b\in\mathbb{R}\}.$$

Moreover we have the homeomorphism

 $T : \mathbb{R}^2_\gamma o \mathbb{R}^2_\gamma, (x,y) \mapsto (-y-\pi, -x+\pi).$

Now T yields an automorphism of \mathcal{B} which we also denote by T. We aim to define a functor

 $\iota : \mathcal{B}
ightarrow \mathbf{D}^b(k_{\mathbb{R}})$

such that

2.1 Interleavings

For convenience we set

$$lpha : \mathbb{R} o S^1, x \mapsto rac{1}{\sqrt{x^2+1}}(1,x)$$

and

$$p{:}\,\mathbb{R} o S^1,t\mapsto e^{it}.$$

For $a,b\in\mathbb{R}$ let

$$ar{s}^{(a,b)}{:}\,S^1 o S^1, (x,y) \mapsto egin{cases} ig(x,y), & x=0\ lphaig(rac{y}{x}+aig), & x>0\ -lphaig(rac{y}{x}-big), & x<0 \end{cases}$$

and let $s^{(a,b)} \colon \mathbb{R} \to \mathbb{R}$ be the unique continuous map with

$$s^{(a,b)}\left(rac{\pi}{2}
ight)=rac{\pi}{2} \quad ext{and} \quad ar{s}^{(a,b)}\circ p=p\circ s^{(a,b)}.$$

With this we set

 $\iota \circ T = \iota(_)[1].$ (1)

We start by setting

 $\iota(q(a,b)):=0 \quad ext{for all} \ \ a,b\in \mathbb{R} \ \ ext{with} \ \ |a+b|\geq \pi.$ In some sense ι is supported on $M:=\{(x,y)\in \mathbb{R}^2\mid -\pi\leq x+y\leq \pi\}.$ For $-rac{\pi}{2} \leq a \leq b \leq rac{\pi}{2}$ we set ((1,1)) 1

$$\iota(q(a,b)) := k_{(an a, an b)} \ \iota(q(-\pi-a,b)) := k_{[an a, an b)} \ \iota(q(a,\pi-b)) := k_{(an a, an b)} \ \iota(q(-\pi-a,\pi-b)) := k_{(an a, an b)} \ \iota(q(-\pi-a,\pi-b)) := k_{[an a, an b]}$$

whenever it makes sense.

$$S^{(a,b)} \colon \mathbb{R}^2 o \mathbb{R}^2, (x,y) \mapsto ig(s^{(a,b)}(x),s^{(b,a)}(y)ig)$$

and we note that

 $S^{(a,b)} \circ T = T \circ S^{(a,b)}.$

Altogether we get a homomorphism of monoidal posets

$$\mathbb{R}^{\circ} imes \mathbb{R}
ightarrow \operatorname{Aut}(\mathcal{B}), (a,b)\mapsto S^{(a,b)}$$

and post-composing this with the contravariant strict monoidal functor

$$\operatorname{Aut}(\mathcal{B})
ightarrow \operatorname{Aut}(\mathfrak{PSh}(\mathcal{B})), \left\{ egin{array}{c} T \mapsto (_) \circ T \ \eta \mapsto (_) \circ \eta \end{array}
ight.$$

we get a contravariant strict monoidal functor

$$\mathcal{S}:\mathbb{R}^{\circ} imes\mathbb{R}
ightarrow\operatorname{Aut}(\mathfrak{PSh}(\mathcal{B}))$$

with

$$\mathcal{S}(a,b)(F)=S^{-(a,b)}_*F \hspace{1em} ext{for all}\hspace{1em}F\in\mathfrak{PGh}(\mathcal{B})\hspace{1em} ext{and}\hspace{1em}a,b\in\mathbb{R}$$

Analogously to (de Silva, Munch, and Stefanou 2017) and (Fluhr 2017) we can define ε -interleavings of the form

So we specified ι on

 $\mathcal{U} := \{q(a,b) \mid a,b \in \mathbb{R}, 0 < b-a \leq 2\pi\}.$

For $U,V\in\mathcal{U}$ with $U\subseteq V$ we choose $\iota(U\subseteq V)$ in the canonical way. Together with condition (1) this almost determines ι . It remains to specify for $\frac{\pi}{2} \leq a \leq b \leq c \leq \frac{\pi}{2}$ (whenever it makes sense) homomorphisms

 $k_{[an b, an c]} = \iota(q(-\pi-b,\pi-c))
ightarrow \iota(T(q(a,b))) = k_{(an a, an b)}[1]$ $k_{[an a, an b]} = \iota(q(-\pi-a,\pi-b))
ightarrow \iota(T(q(b,c))) = k_{(an b, an c)}[1].$

We specify these maps in the form of extensions:

 $0 o k_{(an a, an b)} o k_{(an a, an c]} o k_{[an b, an c]} o 0$ $0 o k_{(an \, b, an \, c)} o k_{[an \, a, an \, c)} \stackrel{-1}{ o} k_{[an \, a, an \, b]} o 0.$

2 The Mayer-Vietoris Presheaf

Let $f: X \to \mathbb{R}$ be a continuous function, then

 $\hom(\iota_{-}, Rf_*k_X)$

defines a presheaf supported on M. More generally we have the functor

 $h: \mathbf{D}^b(k_{\mathbb{R}}) o \mathfrak{PSh}(\mathcal{B}), F \mapsto \hom(\iota_,F)$

to the category of presheaves supported on M.

3 Constructibility

Definition (Flip-Grid-constructible Presheaves on \mathcal{B})

A presheaf F on \mathcal{B} is *flip-grid-constructible* if it is point-wise finitedimensional, has finite support, and if there is a finite subset $C \subset S^1$ such that $F(U \subseteq V)$ is an isomorphism for all $U, V \in \mathcal{B}$ with $U\cap ilde{C}=V\cap ilde{C}$, where $ilde{C}:=p^{-1}(C) imesig(-p^{-1}(C)+\piig)$.

Now a flip-grid-constructible presheaf is a sheaf and the category of flipgrid-constructible sheaves supported on M is an Abelian Frobenius category which we denote by \mathbf{C} . By Kashiwara and Schapira (2017, Corollary 1.20 and Proposition 1.16) the subcategory $\mathbf{D}^b_{\mathbb{R}c,c}(k_\mathbb{R}) \subset \mathbf{D}^b(k_\mathbb{R})$ is in the full additive subcategory generated by the image of ι . Thus hrestricts to a full and faithful functor from $\mathbf{D}^b_{\mathbb{R}c,c}(k_{\mathbb{R}})$ to the category of projectives in **C**. In particular

 $h(Rf_*k_X) = \hom(\iota_{-}, Rf_*k_X)$

is projective for a Morse function $f: X \to \mathbb{R}$ defined on a closed smooth manifold X.

