In the following let k be a field and let $\mathbf{D}^{b}\left(k_{\mathbb{R}}\right)$ be the bounded derived category of sheaves on \mathbb{R} with values in the category of k-vector spaces.

1 A Happel Functor

We consider the γ-topology on \mathbb{R}^{2}, where $\gamma:=[0, \infty) \times(-\infty, 0]$. Setting

$$
q(a, b):=(a, \infty) \times(-\infty, b)
$$

we have the following base

$$
\mathcal{B}:=\{q(a, b) \mid a, b \in \mathbb{R}\}
$$

Moreover we have the homeomorphism

$$
T: \mathbb{R}_{\gamma}^{2} \rightarrow \mathbb{R}_{\gamma}^{2},(x, y) \mapsto(-y-\pi,-x+\pi)
$$

Now T yields an automorphism of \mathcal{B} which we also denote by T. We aim to define a functor

$$
\iota: \mathcal{B} \rightarrow \mathbf{D}^{b}\left(k_{\mathbb{R}}\right)
$$

such that

$$
\begin{equation*}
\iota \circ T=\iota(-)[1] . \tag{1}
\end{equation*}
$$

We start by setting

$$
\iota(q(a, b)):=0 \quad \text { for all } a, b \in \mathbb{R} \text { with }|a+b| \geq \pi
$$

In some sense ι is supported on $M:=\left\{(x, y) \in \mathbb{R}^{2} \mid-\pi \leq x+y \leq \pi\right\}$.
For $-\frac{\pi}{2} \leq a \leq b \leq \frac{\pi}{2}$ we set

$$
\begin{aligned}
\iota(q(a, b)) & :=k_{(\tan a, \tan b)} \\
\iota(q(-\pi-a, b)) & :=k_{[\tan a, \tan b)} \\
\iota(q(a, \pi-b)) & :=k_{(\tan a, \tan b]} \\
\iota(q(-\pi-a, \pi-b)) & :=k_{[\tan a, \tan b]}
\end{aligned}
$$

whenever it makes sense.

So we specified ι on

$$
\mathcal{U}:=\{q(a, b) \mid a, b \in \mathbb{R}, 0<b-a \leq 2 \pi\}
$$

For $U, V \in \mathcal{U}$ with $U \subseteq V$ we choose $\iota(U \subseteq V)$ in the canonical way. Together with condition (1) this almost determines ι. It remains to specify for $\frac{\pi}{2} \leq a \leq b \leq c \leq \frac{\pi}{2}$ (whenever it makes sense) homomorphisms

$$
\begin{aligned}
k_{[\tan b, \tan c]} & =\iota(q(-\pi-b, \pi-c)) \rightarrow \iota(T(q(a, b)))=k_{(\tan a, \tan b)}[1] \\
k_{[\tan a, \tan b]} & =\iota(q(-\pi-a, \pi-b)) \rightarrow \iota(T(q(b, c)))=k_{(\tan b, \tan c)}[1]
\end{aligned}
$$

We specify these maps in the form of extensions:

$$
\begin{aligned}
& 0 \rightarrow k_{(\tan a, \tan b)} \rightarrow k_{(\tan a, \tan c]} \rightarrow k_{[\tan b, \tan c]} \rightarrow 0 \\
& 0 \rightarrow k_{(\tan b, \tan c)} \rightarrow k_{[\tan a, \tan c)} \xrightarrow{-1} k_{[\tan a, \tan b]} \rightarrow 0
\end{aligned}
$$

2 The Mayer-Vietoris Presheaf

Let $f: X \rightarrow \mathbb{R}$ be a continuous function, then

$$
\operatorname{hom}\left(\iota_{-}, R f_{*} k_{X}\right)
$$

defines a presheaf supported on M. More generally we have the functor

$$
h: \mathbf{D}^{b}\left(k_{\mathbb{R}}\right) \rightarrow \mathfrak{P S h}(\mathcal{B}), F \mapsto \operatorname{hom}\left(\iota_{-}, F\right)
$$

to the category of presheaves supported on M.

2.1 Interleavings

For convenience we set

$$
\alpha: \mathbb{R} \rightarrow S^{1}, x \mapsto \frac{1}{\sqrt{x^{2}+1}}(1, x)
$$

and

$$
p: \mathbb{R} \rightarrow S^{1}, t \mapsto e^{i t}
$$

For $a, b \in \mathbb{R}$ let

$$
\bar{s}^{(a, b)}: S^{1} \rightarrow S^{1},(x, y) \mapsto \begin{cases}(x, y), & x=0 \\ \alpha\left(\frac{y}{x}+a\right), & x>0 \\ -\alpha\left(\frac{y}{x}-b\right), & x<0\end{cases}
$$

and let $s^{(a, b)}: \mathbb{R} \rightarrow \mathbb{R}$ be the unique continuous map with

$$
s^{(a, b)}\left(\frac{\pi}{2}\right)=\frac{\pi}{2} \quad \text { and } \quad \bar{s}^{(a, b)} \circ p=p \circ s^{(a, b)}
$$

With this we set

$$
S^{(a, b)}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2},(x, y) \mapsto\left(s^{(a, b)}(x), s^{(b, a)}(y)\right)
$$

and we note that

$$
S^{(a, b)} \circ T=T \circ S^{(a, b)}
$$

Altogether we get a homomorphism of monoidal posets

$$
\mathbb{R}^{\circ} \times \mathbb{R} \rightarrow \operatorname{Aut}(\mathcal{B}),(a, b) \mapsto S^{(a, b)}
$$

and post-composing this with the contravariant strict monoidal functor

$$
\operatorname{Aut}(\mathcal{B}) \rightarrow \operatorname{Aut}(\mathfrak{P S h}(\mathcal{B})),\left\{\begin{array}{l}
T \mapsto(-) \circ T \\
\eta \mapsto(-) \circ \eta
\end{array}\right.
$$

we get a contravariant strict monoidal functor

$$
\mathcal{S}: \mathbb{R}^{\circ} \times \mathbb{R} \rightarrow \operatorname{Aut}(\mathfrak{P S h}(\mathcal{B}))
$$

with

$$
\mathcal{S}(a, b)(F)=S_{*}^{-(a, b)} F \quad \text { for all } F \in \mathfrak{P S h}(\mathcal{B}) \text { and } a, b \in \mathbb{R}
$$

Analogously to (de Silva, Munch, and Stefanou 2017) and (Fluhr 2017) we can define ε-interleavings of the form

3 Constructibility

Definition (Flip-Grid-constructible Presheaves on \mathcal{B})
A presheaf F on \mathcal{B} is flip-grid-constructible if it is point-wise finitedimensional, has finite support, and if there is a finite subset $C \subset S^{1}$ such that $F(U \subseteq V)$ is an isomorphism for all $U, V \in \mathcal{B}$ with $U \cap \tilde{C}=V \cap \tilde{C}$, where $\tilde{C}:=p^{-1}(C) \times\left(-p^{-1}(C)+\pi\right)$.
Now a flip-grid-constructible presheaf is a sheaf and the category of flip-grid-constructible sheaves supported on M is an Abelian Frobenius category which we denote by C. By Kashiwara and Schapira (2017, Corollary 1.20 and Proposition 1.16) the subcategory $\mathbf{D}_{\mathbb{R} c, c}^{b}\left(k_{\mathbb{R}}\right) \subset \mathbf{D}^{b}\left(k_{\mathbb{R}}\right)$ is in the full additive subcategory generated by the image of ι. Thus h restricts to a full and faithful functor from $\mathbf{D}_{\mathbb{R} c, c}^{b}\left(k_{\mathbb{R}}\right)$ to the category of projectives in C. In particular

$$
h\left(R f_{*} k_{X}\right)=\operatorname{hom}\left(\iota_{-}, R f_{*} k_{X}\right)
$$

is projective for a Morse function $f: X \rightarrow \mathbb{R}$ defined on a closed smooth manifold X.

