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Invariants of spaces over some metric space

We consider the category of locally connected topological spaces over some complete
metric space M , whose objects are continuous functions to M and whose morphisms
between two given functions f : X → M and g : Y → M are the continuous maps
ϕ : X → Y such that

X
ϕ //

f   

Y

g~~
M

commutes. In the following we will consider several invariants (mostly given as functors
to other categories and mostly in the special case where M = R) under isomorphisms
of objects in this category.

Spatial Invariants

The Display Space

We summarize some concluding results from (Funk 1995). We assume that M is a
complete metric space.

Definition. For a locally connected topological space X, we denote by Λ(X)
it’s set of connected components. Given an open subset U ⊂ X we denote by
Λ(U) the set of connected components of U , where we augment U with the
subspace topology. This defines a cosheaf on X with values in the category of
sets. Given a continuous map f : X → M we denote by λf the pushforward
f∗Λ and obtain the functor λ from the category of locally connected topological
spaces over M to the category of set-valued cosheaves on M .
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For a set-valued (pre)cosheaf Funk (1995) provides a construction similar to the étalé
space of a (pre)sheaf.

Definition. Given a cosheaf D on M we define it’s display space disD as
the disjoint union of costalks Sp :=

{
x ∈

∏
p∈U∈O(M) DU

∣∣ DU,V

(
πU (x)

)
=

πV (x) for all U ⊆ V
}
over all p ∈ M where O(M) is the set of open subsets

of M . Further we define γD : disD → M by γD(x) = p for all x ∈ Sp. To
specify a topology on disD we provide as a basis {(U, b)}U∈O(M), b∈DU where
(U, b) := {x ∈ γ−1

D (U) | πU (x) = b} for U ∈ O(M) and b ∈ DU .

By Funk (1995 Theorem 6.1) disD is locally connected for any cosheaf D on M .

Assumption. From this point on we assume all topological spaces to be locally
connected.

We continue to specify a natural transformation η from id to γ ◦ λ.

Definition. Given a continuous map f : X →M , x ∈ X and U ∈ O(M) with
f(x) ∈ U let [x]U ∈ λf (U) = Λ(f−1(U)) be the connected component of x. Now
we define ηf : X → disλf , x 7→ ([x]U )f(x)∈U∈O(M).

Lemma. With ηf defined as above we have (γ ◦ λ)f ◦ ηf = f .

Proof. Given x ∈ X we have by the definition of ηf that ηf (x) ∈ Sf(x), hence
(γ ◦ λ)f (ηf (x)) = f(x) by the definition of (γ ◦ λ)f .

Lemma. The map ηf as defined above is continuous.

Proof. Given U ∈ O(M) and b ∈ λf (U) = Λ(f−1(U)) we need to show that
η−1
f ({x ∈ (γ◦λ)−1

f (U) | πU (x) = b}) is open. To do so we will show that η−1
f ({x ∈

(γ ◦ λ)−1
f (U) | πU (x) = b}) = b which is open, since X is locally connected.

Suppose that x ∈ X is such that ηf (x) ∈ (γ ◦ λ)−1
f (U) and πU (ηf (x)) = b,

then x ∈ η−1
f ((γ ◦ λ)−1

f (U)) = f−1(U) by the previous lemma. Further we have
b = πU (ηf (x)) = πU (([x]V )f(x)∈V ∈O(M) = [x]U , hence x ∈ b. The converse
follows from a similar argument.

Definition. Let f : X →M be continuous, then f is a cosheaf space over M if
ηf is a homeomorphism.

By (Funk 1995, Theorem 5.9 and Remark 5.10) λ and γ form a pair of adjoint functors
λ a γ with unit η. Further the counit ε for this adjunction is a natural isomorphism
by (Funk 1995, Theorem 6.1). We summarize this as a

(1) Theorem. λ and γ form a pair of adjoint functors λ a γ with unit η and whose
counit ε is an isomorphism.

Corollary. The category of cosheaves on M is equivalent to the reflective
subcategory of cosheaf spaces over M .
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Proof. This follows with (Gabriel and Zisman 1967, Proposition 1.3 or http:
//ncatlab.org/nlab/show/reflective+subcategory#characterizations).

Remark. Beyond the above Funk (1995 Theorem 5.17) provides a topological
characterization of cosheaf spaces which hasn’t been mentioned here.

The Reeb Space

de Silva, Munch, and Patel (2015) observed that γ ◦ λ is closely related to another
endofunctor on topological spaces over M , the Reeb space.

Definition. Given a continuous map f : X → M and x ∈ X let πf (x) be
the connected component of x in f−1(f(x)). In this way we obtain a function
πf : X → 2X and we endow πf (X) with the quotient topology1. By the universal
property of the quotient space there is a unique continuous function f̃ : πf (X)→
M such that f̃ ◦ πf = f and we define ρf = f̃ .

With this definition ρ forms an endofunctor on topological spaces over M and π a
natural transformation from id to ρ. Given a continuous map f : X →M for a locally
connected topological space X the universal property of the quotient space induces
a unique map φf : πf (X) → disλf such that φf ◦ πf = ηf and thus in particular
ρf = (γ ◦ λ)f ◦ πf , hence we have the following commutative diagram

id
π

��

η

!!
ρ

φ
// γ ◦ λ

in the category of endofunctors on locally connected topological spaces over M .

Proposition. The natural transformation λ ◦ φ from λ ◦ ρ to λ ◦ (γ ◦ λ) is an
isomorphism.

Proof. We apply λ to the previous diagram and obtain

λ

λ◦π

}}

λ◦η

##
λ ◦ ρ

λ◦φ
// λ ◦ γ ◦ λ.

Since λ ◦ π is an isomorphism, it suffices to show that λ ◦ η is an isomorphism.
Given f : X → M we apply the inverse bijection induced by the adjunction

1This is in line with the previously made assumption, since quotient spaces of locally connected
spaces are again locally connected.
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(λ a γ, η) to the diagram

f
ηf

%%
ηf

��

(γ ◦ λ)f

(γ ◦ λ)f
id

99

and obtain
λf

id

%%
(λ◦η)f

��

λf

(λ ◦ γ ◦ λ)f ,
(ε◦λ)f

99

hence (λ ◦ η)f is the inverse to (ε ◦ λ)f .

(2) Corollary. φ and η ◦ ρ are naturally ismorphic as functors from the category of
topological spaces over R to the category of homomorphisms in the category of
topological spaces over R.

Example. Let f : X → R be a proper Morse function, then the critical points
of f are isolated and since f is proper, it’s critical values are isolated as well.
Hence for each r ∈ R there is an εr > 0 such that for all 0 < δ ≤ εr the inclusion
of f−1(r) into f−1((r − δ, r + δ)) is a homotopy equivalence and thus φf is a
homeomorphism.

de Silva, Munch, and Patel (2015) provide a self-contained treatment of the above when
λ and γ are restricted to full subcategories of topological spaces over R respectively
cosheaves on R. When φ is restricted to this subcategory of topological spaces over R
referred to as constructible R-spaces, then φ is a natural isomorphism. Further the
authors provide a geometric description of the resulting subcategory of cosheaf spaces
over R. They refer to this category as Reeb or as the category of R-graphs.

Ascending Cosheaves

In addition to the space R we consider the reals augmented with a coarser topology.

Definition. Let R̄ be the topological space (R, {(−∞, r)}−∞≤r≤∞), then we
have the continuous map id: R→ R̄, x 7→ x.

We can pushforward cosheaves on R to cosheaves on R̄ via id.
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Definition. Given a cosheaf F on R and −∞ ≤ r ≤ ∞ we define
id∗ F ((−∞, r)) = F ((−∞, r)).

Similar to defining the pullback for sheaves, we take two steps to define the pullback
of a cosheaf via id.

Definition. Given a cosheaf F on R̄ and an open subset U ⊆ R we define
id+ F (U) := F ((−∞, supU)).

With this definition id+ F is merely a precosheaf for all we know. Yet we have the
following.

Lemma. Given a cosheaf F on R̄ the precosheaf id+ F is a cosheaf on the poset
of open intervals.

Proof. Let (a, b) =
⋃
i∈I(ai, bi). Without loss of generality we assume that I

has a linear order such that bi ≤ bj for all i ≤ j and ai ≤ aj for all i ≤ j with
bi = bj . Since b = supi∈I sup(ai, bi) = supi∈I bi and since F is a cosheaf we have
the coequalizer diagram

∐
i<j F ((−∞, bi))

σ //

σ′
//
∐
i∈I F ((−∞, bi)) // F ((−∞, b))

where σi,j maps F ((−∞, bi)) identical to F ((−∞, bi)) and σ′i,j maps F ((−∞, bi))
to F ((−∞, bj)) via the induced inclusion. Now suppose we have i < j such that
bi ≤ aj , then since [bi, aj ] is compact we can find i < i1 < ... < ik such that
[bi, aj ] ⊆

⋃k
l=1(ail , bil) and such that this cover is minimal. If ik < j we set

τ = σik,j , τ ′ = σ′ik,j and if j < ik we set τ = σj,ik , τ ′ = σ′j,ik . With this we have
σ′i,j ◦ σ

−1
i,j = τ ′ ◦ τ−1 ◦ σ′ik−1,ik

◦ σ−1
ik−1,ik

◦ ... ◦ σ′i1,i2 ◦ σ
−1
i1,i2
◦ σ′i,i1 ◦ σ

−1
i,i1

and yet
at the same time bj > aik , bik > aj , bik−1 > aik , . . . , bi1 > ai2 , and bi > ai1 ,
since [bi, aj ] is connected and the cover is minimal. Thus we may omit all terms
from the leftmost coproduct in the above diagram where bi ≤ aj without loosing
the property of it being a coequalizer diagram. Now for any i < j such that
bi > aj we have id+ F ((ai, bi) ∩ (aj , bj)) = F ((−∞, bi)), hence we may replace
the corresponding term in the leftmost coproduct by id+ F ((ai, bi) ∩ (aj , bj)).
Similarly we may replace the terms in the middle and the term on the right to
arrive at a coequalizer diagram of the form∐

i<j, bi>aj
id+ F ((ai, bi) ∩ (aj , bj)) // //

∐
i∈I id+ F ((ai, bi)) // id+ F ((a, b)).

Now for i < j such that bi ≤ aj we have id+ F ((ai, bi) ∩ (aj , bj)) = id+ F (∅) =
F (∅) = ∅ which does not contribute to the coequalizer and this implies the claim.

Definition. Given a cosheaf F on R̄ and an open subset U ⊆ R we define
id−1 F (U) := lim−→(a,b)⊆U id+ F ((a, b)).

By the previous lemma id−1 F as defined above is a cosheaf.
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Remark. id−1 F as defined above is isomorphic to the cosheafification of id+ F
or the cosheaf associated to id+ F , see for example (Funk 1995, Theorem 6.3
and Remark 6.4).

Definition. Given a cosheaf F on R we define a homomorpism η′F of cosheaves
from F to id−1 id∗ F . Since both are cosheaves it suffices to define η′F on
open intervals. So for −∞ ≤ a < b ≤ ∞ we define η′F from F ((a, b)) to
id−1 id∗ F ((a, b)) = id+ id∗ F ((a, b)) = F ((−∞, b)) to be the map induced by
the inclusion (a, b) ⊆ (−∞, b).

Definition. Let F be a cosheaf on R, then F is ascending if η′F is an isomor-
phism.

(3) Proposition. id∗ and id−1 form a pair of adjoint functors id∗ a id−1 with unit
η′ and whose counit ε′ is an isomorphism.

Proof. Let F be a cosheaf on R, let G be a cosheaf on R̄, and let g be a
homomorphism from F to id−1 G. Now suppose we have a morphism f from
id∗ F to G such that (id−1 f) ◦ η′F = g, then for any r ∈ R we have g(−∞,r) =(
(id−1 f)◦η′G

)
(−∞,r) = f(−∞,r) and this determines f . Now suppose f is defined

by g(−∞,r) = f(−∞,r) for any r ∈ R and we have −∞ ≤ a < b ≤ ∞, then g(a,b)
is the same as g(−∞,b) pre-composed with the map induced by inclusion from
F ((a, b)) to F ((−∞, b)) by naturality. But this is the same as

(
(id−1 f)◦η′G

)
(a,b)

by definition of f , hence g and (id−1 f) ◦ η′G agree on a basis of R.
By the above argument ε′G is equal to id id−1 G when restricted to
id∗ id−1 G((−∞, r)) = id−1 G((−∞, r)) = G((−∞, r)), hence ε′G is an
isomorphism.

Corollary. The category of cosheaves on R̄ is equivalent to the reflective
subcategory of ascending cosheaves on R.

Proof. This follows with (Gabriel and Zisman 1967, Proposition 1.3 or http:
//ncatlab.org/nlab/show/reflective+subcategory#characterizations).

Ascending Spaces

Later we will make the ascending cosheaf id−1 id∗ λf for a continuous function f the
cosheaf version of the join tree associated to f . As an intermediate step we show
that we can obtain this cosheaf not only by post-composing λ with id−1 id∗ but also
by pre-composing λ with another functor, the epigraph. This use of the epigraph in
defining the join tree2 is due to Morozov, Beketayev, and Weber (2013).

Definition. Let f : X → R be a continuous map, it’s epigraph is epi f :=
{(x, y) ∈ X × R | y ≥ f(x)}. Further we define ιf : epi f → R, (x, y) 7→ y and
κf : X → epi f, x 7→ (x, f(x)).

2Though join trees are referred to as merge trees in the cited paper.
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With these definitions ι defines a functor on topological spaces over R with κ a natural
transformation from id to ι.

(4) Definition. A function f : X → R is ascending if for all r ∈ R there is a
continuous map Hr : X × [0, 1] → X such that Hr(x, t) = x for all 0 ≤ t ≤ 1
and x ∈ X with f(x) ≥ r and such that f(Hr(x, t)) = r + t(f(x) − r) for all
0 ≤ t ≤ 1 and x ∈ X with f(x) ≤ r.

(5) Lemma. For any continuous function f : X → R the projection ιf : epi f → R
is ascending.

Proof. For r ∈ R we set Hr : epi f × [0, 1]→ epi f, ((x, y), t) 7→ (x,max{r+ t(y−
r), y}).

(6) Lemma. For any ascending function f : X → R the cosheaf λf is ascending as
well.

Proof. Given−∞ ≤ a < r < b ≤ ∞ we proof that the maps from Λ(f−1([r, b))) to
Λ(f−1((a, b))) = λf ((a, b)) respectively Λ(f−1((−∞, b))) = λf ((−∞, b)) induced
by the inclusions are bijections3. From this our claim follows. Since inclusions
as maps of spaces always commute the two bijections commute with (η′ ◦ λ)f
as well, hence (η′ ◦ λ)f is a bijection as a map from λf ((a, b)) to λf ((−∞, b)) =
id∗ λf ((−∞, b)) = id+ id∗ λf ((a, b)) = id−1 id∗ λf ((a, b)). And since the open
intervals of R form a basis, the lemma follows.
Given any point x ∈ f−1((a, r)) the map t 7→ Hr(x, t) defines a continuous
path in f−1((a, b)) from Hr(x, 0) ∈ f−1([r, b)) to x, hence induced map from
Λ(f−1([r, b))) to Λ(f−1((a, b))) = λf ((a, b)) is surjective. Now suppose x, y ∈
f−1([r, b)) lie in the same connected component C of f−1((a, b)), then Hr(C, 0) is
connected sinceHr is continuous. Further x, y ∈ Hr(C, 0), hence the induced map
from Λ(f−1([r, b))) to λf ((a, b)) is injective. The induced map from Λ(f−1([r, b)))
to λf ((−∞, b)) is a bijection by a similar argument.

Remark. The previous result remains valid if instead of λ we consider the
pushforward of another cosheaf on X that maps inclusions of open sets in X
that are homotopy equivalences to bijections of sets.

(7) Lemma. Given a continuous map f : X → R the homomorphism id∗(λ ◦ κ)f
from id∗ λf to id∗(λ ◦ ι)f is an isomorphism.

Proof. Given b ∈ R∪{∞} we show that κf (f−1((−∞, b)) = {(x, f(x))}{x∈X|f(x)<b}
is a strong deformation retract of ι−1

f ((−∞, b)) = {(x, y) ∈ X × (−∞, b) | y ≥
f(x)}. Then the result follows by a similar argument as the previous
lemma. We define R : ι−1

f ((−∞, b)) × [0, 1] → ι−1
f ((−∞, b)), ((x, y), t) 7→

(x, f(x) + t(y − f(x))), then R((x, y), 1) = (x, y) and R((x, y), 0) = (x, f(x)) for
all (x, y) ∈ ι−1

f ((−∞, b)).
3The space f−1([r, b)) may not be locally connected. However we won’t need this property.
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(8) Proposition. The natural transformations η′ ◦ λ and λ ◦ κ are isomorphic as
objects in the category of functors from topological spaces over R to cosheaves
on R under λ. In particular id−1 id∗ λ and λ ◦ ι are naturally isomorphic.

Proof. Given f : X → R we have the commutative diagram

λf
(λ◦κ)f //

(η′◦λ)f

��

(λ ◦ ι)f

(η′◦λ◦ι)f

��
id−1 id∗ λf

id−1 id∗(λ◦κ)f

// id−1 id∗(λ ◦ ι)f .

By lemma 5 and lemma 6 the homomorphism (η′ ◦ λ ◦ ι)f is an isomorphism.
And by lemma 7 we have that id−1 id∗(λ ◦ κ)f is an isomorphism.

The Join Tree

The following definition4 is from (Morozov, Beketayev, and Weber 2013).

Definition. Let f : X → R be a continuous map we define it’s join tree to be
the continuous map (ρ ◦ ι)f from (π ◦ ι)f (epi f) to R.

With this definition ρ ◦ ι is an endofunctor on topological spaces over R. Given a
continuous map f : X → R we have (π ◦ ι)f ◦κf = (ρ ◦κ)f ◦πf , so in somewhat sloppy
notation (π ◦ ι) ◦ κ = (ρ ◦ κ) ◦ π is a natural transformation from id to ρ ◦ ι. Similarly
we have the function (γ ◦ λ ◦ ι)f defined on the display space dis(λ ◦ ι)f of (λ ◦ ι)f .
And just as with ρ we have the natural transformation (η ◦ ι) ◦ κ = (γ ◦ λ ◦ κ) ◦ η from
id to γ ◦ λ ◦ ι. The two constructions are related via the commutative diagram

ρf
(ρ◦κ)f //

φf

��

(ρ ◦ ι)f

(φ◦ι)f

��

f

πf
66

ηf ((
(γ ◦ λ)f (γ◦λ◦κ)f

// (γ ◦ λ ◦ ι)f

given a function f : X → R. In the section on the Reeb space we considered the
left triangle which suggests to replace the Reeb graph functor ρ and the natural
transformation π by γ ◦ λ and η respectively. Now ρ ◦ κ yields a nice and classic
map from any Reeb graph to the corresponding join tree, so our replacement of the
Reeb graph functor ρ by γ ◦ λ is only complete, if also we can replace the join tree
functor ρ ◦ ι and the natural transformation ρ ◦ κ and if we can extend φ to a natural
transformation from ρ ◦ κ to it’s replacement. And here the commutative square on
the right hand side, suggests we may take λ ◦ γ ◦ ι as a replacement for the join tree
functor ρ ◦ ι and to take γ ◦ λ ◦ κ as a replacement for ρ ◦ κ, since then we can extend
φ by φ ◦ ι to a natural transformation from ρ ◦ κ to γ ◦ λ ◦ κ. We further note that by

4Though join trees are referred to as merge trees in the cited paper.
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corollary 2 in that section the natural transformation (φ, φ ◦ ι) from ρ ◦ κ to γ ◦ λ ◦ κ
is isomorphic to the natural transformation (η ◦ ρ, η ◦ ρ ◦ ι) from ρ ◦ κ to γ ◦ λ ◦ ρ ◦ κ,
so our choice of replacements is the same as if we applied γ ◦ λ to the upper row in
the diagram. And by proposition 8 we have a natural isomorphism from (γ ◦ λ ◦ ι) to
γ id−1 id∗ λ that commutes with γ ◦λ ◦κ and γ ◦ η′ ◦λ sothat we can use the following

Proposition. id∗ λ and γ id−1 form a pair of adjoint functors id∗ λ a γ id−1

with unit (γ ◦ η′ ◦ λ) ◦ η and whose counit is an isomorphism.

Proof. The first statement follows from theorem 1, proposition 3 and the general
statement that the two pairs of adjoint functors, when composed in the same way
as in our claim, form again a pair of adjoint functors with the unit described as
in the claim, see for example https://en.wikipedia.org/wiki/Adjoint_functors#
Composition. And for the counit of this composed adjunction we have the
formula id∗ ε id−1 ◦ε′. By theorem 1 ε is an isomorphism, hence id∗ ε id−1 is
an isomorphism and by proposition 3 ε′ is an isomorphism and thus our claim
follows.

Corollary. The category of cosheaves on R̄ is equivalent to the reflective
subcategory of ascending cosheaf spaces over R.

Proof. By Gabriel and Zisman (1967 Proposition 1.3 or http://ncatlab.org/nlab/
show/reflective+subcategory#characterizations) the category of cosheaves on
R̄ is equivalent to the reflective subcategory of those spaces f : X → R over R
for which (γ ◦ η′ ◦ λ)f ◦ ηf is an isomorphism. Now suppose this is the case for
f , then f is isomorphic to γ id−1 id∗ λ which is in the image of γ and thus a
cosheaf space, hence ηf is an isomorphism. From this it follows that (γ ◦ η′ ◦ λ)f
is an isomorphism as well, hence by proposition 8 (γ ◦ λ ◦ κ)f is an isomorphism.
Now we consider the commutative diagram

f
κf //

ηf

��

ιf

(η◦ι)f

��
(γ ◦ λ)f (γ◦λ◦κ)f

// (γ ◦ λ ◦ ι)f .

Hence we have the retract5 R := η−1
f ◦ (γ ◦ λ ◦ κ)−1

f ◦ (η ◦ ι)f from ιf to f . By
lemma 5 ιf is ascending, so given r ∈ R there is a map Hr as in definition 4.
Now let H̃r : X × [0, 1]→ X be defined by H̃r(x, t) = r(Hr(κf (x), t)) then H̃r

inherits the properties needed in order for f to be ascending. Conversely if f is
an ascending cosheaf space over R, then ηf is an isomorphism since f is a cosheaf
space. And by lemma 6 λf is ascending, hence (η′ ◦ λ)f is an isomorphism.

In conclusion (γ ◦ λ ◦ ι)f is an ascending cosheaf space over R given a function f . It’s
cosheaf of connected components (λ ◦ γ ◦ λ ◦ ι)f is isomorphic to (λ ◦ ι)f by theorem 1.
By lemma 5 and lemma 6 (λ ◦ ι)f is ascending, and thus we have an associated cosheaf
id∗(λ ◦ ι)f on R̄ via the adjunction id∗ a id−1 by proposition 3. By lemma 7 this

5By a retract we mean a homomorphism R in the category of topological spaces over R from ιf to
f such that R ◦ κf = id.
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cosheaf is isomorphic to id∗ λf which is the cosheaf on R̄ associated to γ id−1 id∗ λf
via the adjunction id∗ λ a γ id−1. Now applying id−1 to id∗ λf ∼= id∗(λ ◦ ι)f recovers
(λ ◦ ι)f , hence (γ ◦ λ ◦ ι)f and γ id−1 id∗ λf are isomorphic and thus a posteriori
id∗ λf is the cosheaf on R̄ associated to the ascending cosheaf space (γ ◦ λ ◦ ι)f via
the adjunction id∗ λ a γ id−1. (Here the author allowed himself some redundance
repeating the proof of proposition 8.)

From Sets to Algebras

For an integral domain A we consider the contravariant functor hom(_, A) from the
category of sets to the category of commutative unital A-algebras. We note that since
A is an integral domain the idempotents of hom(L,A) for any set L are precisely the
maps from L to A with values in {0, 1}.

(9) Lemma. hom(_, A) is pseudomonic.

Proof. hom(_, A) is faithful since for any map m : L→ K and k ∈ K we have
m−1(k) =

(
hom(m,A)(1k)

)−1(1) where 1k := 1{k} and 1K′ is the indicator
function for any subset K ′ ⊆ K.
Now suppose ϕ is an isomorphism from hom(K,A) to hom(L,A) then ϕ induces
a bijection between the non-zero centrally primitive idempotents of hom(K,A)
and hom(L,A). Now the non-zero centrally primitive idempotents of hom(K,A)
are just the maps of the form 1k for some k ∈ K and similarly for hom(L,A). Let
m : L→ K be the corresponding inverse bijection, then for any c ∈ hom(K,A)
and l ∈ L we have

ϕ(c) · 1l = ϕ(c · 1m(l)) = ϕ(c(m(l))1m(l))
= c(m(l))ϕ(1m(l)) = c(m(l))1l
= hom(m,A)(c) · 1l

and thus ϕ = hom(m,A).

Corollary. The functor hom(_, A) induces an anti-equivalence between the
category of sets and the replete image of hom(_, A).

Corollary. For any category C the functor hom(_, A) induces an anti-
equivalence between the category of set-valued precosheaves on C and the
category of presheaves with values in the replete image of hom(_, A).

Lemma. hom(_, A) is full when restricted to the category of finite sets.

Proof. Let ϕ : hom(K,A)→ hom(L,A) be a homomorphism withK and L finite,
then ϕ(1k) is an idempotent for each k ∈ K and thus we have subsets Lk ⊆ L
such that ϕ(1k) = 1Lk

. Further we have
∑
l∈L 1l = 1 = ϕ(1) = ϕ

(∑
k∈K 1k) =∑

k∈K ϕ(1k) =
∑
k∈K 1Lk

and thus L =
⋃
k∈K Lk. Now for any k, k′ ∈ K with

k 6= k′ we have 0 = ϕ(0) = ϕ(1k · 1k′) = 1Lk
· 1L′

k
, hence Lk and Lk′ are disjoint.

Altogether we obtain that the subsets Lk with k ∈ K form a partition of L and
we may define a map m : L → K such that m(l) = k for l ∈ Lk for all k ∈ K.
With this definition we have ϕ = hom(m,A) since the two maps agree on a basis
of hom(K,A).
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The following example shows that we cannot assume the unrestricted functor hom(_, A)
to be full, if A is a general ring.

Example. We consider hom(N,Z/pZ). Let a be the ideal of all c ∈ hom(N,Z/pZ)
with c−1(0) cofinite. By Krull’s theorem hom(N,Z/pZ) has a maximal ideal m
with a ⊂ m and this gives a homomorphism of fields i : Z/pZ→ hom(N,Z/pZ)/m.
We further have [c]p − [c] = [cp − c] = 0 for all [c] ∈ hom(N,Z/pZ)/m and as
Xp −X is a polynomial of degree p it has at most p roots in hom(N,Z/pZ)/m
and thus i is a bijection. Now the canonical homomorphism from hom(N,Z/pZ)
to the quotient hom(N,Z/pZ)/m yields a homomorphism ϕ : hom(N,Z/pZ)→
hom({1},Z/pZ) ∼= Z/pZ which is not in the image of hom(_,Z/pZ), since for
any map m : {1} → N the element 1m(1) ∈ a ⊂ m is mapped to 1 ∈ Z/pZ under
hom(m,Z/pZ).

Remark. From a discussion similar to that of the previous lemma and example we
can conclude that for sets K and L with L non-empty, the map from hom(L,K)
to homA-algebras(hom(K,A),hom(L,A)) induced by hom(_, A) is surjective if
and only if all ideals6 p of hom(K,A), with hom(K,A)/p ∼= A as A-algebras,
are of the form {c ∈ hom(K,A) | c(k) = 0} for some k ∈ K.

Lemma. hom(_, A) is continuous as a functor from the opposed category of
sets to the category of A-algebras.

Proof. We argue that hom(_, A) is continuous as a functor to the category of
commutative rings, the lemma then follows by a general result about limits in
the under category. We fix a small category D. For an object X of any category
C we denote by ∆(X) the constant functor from D to C that maps any object
of D to X and any morphism of D to the identity. Let F be a functor from
D to the category of sets, then we have the canonical natural transformation
t : F → ∆(colim(F )). Now hom(∆(colim(F )), A) = ∆(hom(colim(F ), A)) and
by the universal property of the limit of hom(F (_), A) we have a homomorphism
of rings s : lim(hom(F (_), A))→ hom(colim(F ), A) such that (hom(_, A) ◦ t) ◦
∆(s) is the canonical natural transformation from ∆(lim(hom(F (_), A))) to
hom(F (_), A). Now the forgetful functor from the category of commutative
rings to the category of sets is continuous as well as hom(_, A) as a functor to
the category of sets, hence in the category of sets both (hom(_, A)◦ t)◦∆(s) and
hom(_, A) ◦ t itself satisfy the universal property of the limit of hom(F (_), A),
and thus s is a bijection.

Corollary. If D is a set-valued cosheaf, then hom(D(_), A) defines a sheaf with
values in the category of A-algebras.

Example. For any locally path connected topological space X the singular
homology H0(X) is naturally isomorphic to the free abelian group with basis
Λ(X) and by the universal property of the free ablian group the restriction from
homZ(H0(X), A) to hom(Λ(X), A) is an isomorphism of A-modules. Further we
have a natural isomorphism of A-modules from H0(X,A) to homZ(H0(X), A) by
the universal coefficient theorem and since for any x ∈ X and α, β ∈ H0(X,A)

6which are prime necessarily
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we have

〈α ∪ β, [x]〉 = 〈H0(d,A)(α× β), [x]〉 = 〈α× β,H0(d)([x])〉
= 〈α× β, [(x, x)]〉 = 〈α× β, [x]× [x]〉
= 〈α, [x]〉〈β, [x]〉,

where d : X → X ×X,x 7→ (x, x) is the diagonal map, the composition of these
two isomorphisms is an ismorphism of A-algebras. Since the above identifications
are natural in X, the functors hom(Λ(_), A) and H0(_, A) define isomorphic
sheaves on any locally path connected topological space.
Given a continuous function f : X →M from a locally path connected topological
space X to M , the sheaves f∗ hom(Λ(_), A) ∼= f∗H

0(_, A) and hom(λf (_), A)
are identical. Bubenik, de Silva, and Scott (2014) define a generalized persistence
module on the poset of open sets of M to be a functor to another category,
thus λf is a generalized persistence module with values in the opposed category
of sets and f∗H0(_, A) is a persistence module with values in the category of
A-algebras. A functor from a category C to a category D then gives rise to a
map from the generalized persistence modules with values in C to persistence
modules with values in D, so in their language f∗H0(_, A) is the image of λf
under the map induced by hom(_, A) and thus their theory can be used to relate
these two constructions in the context of topological persistence.
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