Contents

Invariants of spaces over some metric space	1
Spatial Invariants	1
The Display Space	1
The Reeb Space	3
Ascending Cosheaves	4
Ascending Spaces	6
The Join Tree	8
From Sets to Algebras	10
References	12

Invariants of spaces over some metric space

We consider the category of locally connected topological spaces over some complete metric space M, whose objects are continuous functions to M and whose morphisms between two given functions $f: X \to M$ and $g: Y \to M$ are the continuous maps $\varphi: X \to Y$ such that

commutes. In the following we will consider several invariants (mostly given as functors to other categories and mostly in the special case where $M = \mathbb{R}$) under isomorphisms of objects in this category.

Spatial Invariants

The Display Space

We summarize some concluding results from (Funk 1995). We assume that M is a complete metric space.

Definition. For a locally connected topological space X, we denote by $\Lambda(X)$ it's set of connected components. Given an open subset $U \subset X$ we denote by $\Lambda(U)$ the set of connected components of U, where we augment U with the subspace topology. This defines a cosheaf on X with values in the category of sets. Given a continuous map $f: X \to M$ we denote by λ_f the pushforward $f_*\Lambda$ and obtain the functor λ from the category of locally connected topological spaces over M to the category of set-valued cosheaves on M.

For a set-valued (pre)cosheaf Funk (1995) provides a construction similar to the étalé space of a (pre)sheaf.

Definition. Given a cosheaf D on M we define it's display space dis D as the disjoint union of costalks $S_p := \{x \in \prod_{p \in U \in \mathcal{O}(M)} DU \mid D_{U,V}(\pi_U(x)) = \pi_V(x) \text{ for all } U \subseteq V\}$ over all $p \in M$ where $\mathcal{O}(M)$ is the set of open subsets of M. Further we define γ_D : dis $D \to M$ by $\gamma_D(x) = p$ for all $x \in S_p$. To specify a topology on dis D we provide as a basis $\{(U,b)\}_{U \in \mathcal{O}(M), b \in DU}$ where $(U,b) := \{x \in \gamma_D^{-1}(U) \mid \pi_U(x) = b\}$ for $U \in \mathcal{O}(M)$ and $b \in DU$.

By Funk (1995 Theorem 6.1) dis D is locally connected for any cosheaf D on M.

Assumption. From this point on we assume all topological spaces to be locally connected.

We continue to specify a natural transformation η from id to $\gamma \circ \lambda$.

Definition. Given a continuous map $f: X \to M, x \in X$ and $U \in \mathcal{O}(M)$ with $f(x) \in U$ let $[x]_U \in \lambda_f(U) = \Lambda(f^{-1}(U))$ be the connected component of x. Now we define $\eta_f: X \to \operatorname{dis} \lambda_f, x \mapsto ([x]_U)_{f(x) \in U \in \mathcal{O}(M)}$.

Lemma. With η_f defined as above we have $(\gamma \circ \lambda)_f \circ \eta_f = f$.

Proof. Given $x \in X$ we have by the definition of η_f that $\eta_f(x) \in S_{f(x)}$, hence $(\gamma \circ \lambda)_f(\eta_f(x)) = f(x)$ by the definition of $(\gamma \circ \lambda)_f$.

Lemma. The map η_f as defined above is continuous.

Proof. Given $U \in \mathcal{O}(M)$ and $b \in \lambda_f(U) = \Lambda(f^{-1}(U))$ we need to show that $\eta_f^{-1}(\{x \in (\gamma \circ \lambda)_f^{-1}(U) \mid \pi_U(x) = b\})$ is open. To do so we will show that $\eta_f^{-1}(\{x \in (\gamma \circ \lambda)_f^{-1}(U) \mid \pi_U(x) = b\}) = b$ which is open, since X is locally connected. Suppose that $x \in X$ is such that $\eta_f(x) \in (\gamma \circ \lambda)_f^{-1}(U)$ and $\pi_U(\eta_f(x)) = b$, then $x \in \eta_f^{-1}((\gamma \circ \lambda)_f^{-1}(U)) = f^{-1}(U)$ by the previous lemma. Further we have $b = \pi_U(\eta_f(x)) = \pi_U(([x]_V)_{f(x) \in V \in \mathcal{O}(M)}) = [x]_U$, hence $x \in b$. The converse follows from a similar argument.

Definition. Let $f: X \to M$ be continuous, then f is a *cosheaf space over* M if η_f is a homeomorphism.

By (Funk 1995, Theorem 5.9 and Remark 5.10) λ and γ form a pair of adjoint functors $\lambda \dashv \gamma$ with unit η . Further the counit ε for this adjunction is a natural isomorphism by (Funk 1995, Theorem 6.1). We summarize this as a

(1) **Theorem.** λ and γ form a pair of adjoint functors $\lambda \dashv \gamma$ with unit η and whose counit ε is an isomorphism.

Corollary. The category of cosheaves on M is equivalent to the reflective subcategory of cosheaf spaces over M.

Proof. This follows with (Gabriel and Zisman 1967, Proposition 1.3 or http://ncatlab.org/nlab/show/reflective+subcategory#characterizations).

Remark. Beyond the above Funk (1995 Theorem 5.17) provides a topological characterization of cosheaf spaces which hasn't been mentioned here.

The Reeb Space

de Silva, Munch, and Patel (2015) observed that $\gamma \circ \lambda$ is closely related to another endofunctor on topological spaces over M, the Reeb space.

Definition. Given a continuous map $f: X \to M$ and $x \in X$ let $\pi_f(x)$ be the connected component of x in $f^{-1}(f(x))$. In this way we obtain a function $\pi_f: X \to 2^X$ and we endow $\pi_f(X)$ with the quotient topology¹. By the universal property of the quotient space there is a unique continuous function $\tilde{f}: \pi_f(X) \to M$ such that $\tilde{f} \circ \pi_f = f$ and we define $\rho_f = \tilde{f}$.

With this definition ρ forms an endofunctor on topological spaces over M and π a natural transformation from id to ρ . Given a continuous map $f: X \to M$ for a locally connected topological space X the universal property of the quotient space induces a unique map $\phi_f: \pi_f(X) \to \operatorname{dis} \lambda_f$ such that $\phi_f \circ \pi_f = \eta_f$ and thus in particular $\rho_f = (\gamma \circ \lambda)_f \circ \pi_f$, hence we have the following commutative diagram

in the category of endofunctors on locally connected topological spaces over M.

Proposition. The natural transformation $\lambda \circ \phi$ from $\lambda \circ \rho$ to $\lambda \circ (\gamma \circ \lambda)$ is an isomorphism.

Proof. We apply λ to the previous diagram and obtain

Since $\lambda \circ \pi$ is an isomorphism, it suffices to show that $\lambda \circ \eta$ is an isomorphism. Given $f: X \to M$ we apply the inverse bijection induced by the adjunction

¹This is in line with the previously made assumption, since quotient spaces of locally connected spaces are again locally connected.

 $(\lambda \dashv \gamma, \eta)$ to the diagram

and obtain

hence $(\lambda \circ \eta)_f$ is the inverse to $(\varepsilon \circ \lambda)_f$.

(2) Corollary. φ and η ∘ ρ are naturally ismorphic as functors from the category of topological spaces over R to the category of homomorphisms in the category of topological spaces over R.

Example. Let $f: X \to \mathbb{R}$ be a proper Morse function, then the critical points of f are isolated and since f is proper, it's critical values are isolated as well. Hence for each $r \in \mathbb{R}$ there is an $\varepsilon_r > 0$ such that for all $0 < \delta \leq \varepsilon_r$ the inclusion of $f^{-1}(r)$ into $f^{-1}((r - \delta, r + \delta))$ is a homotopy equivalence and thus ϕ_f is a homeomorphism.

de Silva, Munch, and Patel (2015) provide a self-contained treatment of the above when λ and γ are restricted to full subcategories of topological spaces over \mathbb{R} respectively cosheaves on \mathbb{R} . When ϕ is restricted to this subcategory of topological spaces over \mathbb{R} referred to as constructible \mathbb{R} -spaces, then ϕ is a natural isomorphism. Further the authors provide a geometric description of the resulting subcategory of cosheaf spaces over \mathbb{R} . They refer to this category as **Reeb** or as the category of \mathbb{R} -graphs.

Ascending Cosheaves

In addition to the space \mathbb{R} we consider the reals augmented with a coarser topology.

Definition. Let \mathbb{R} be the topological space $(\mathbb{R}, \{(-\infty, r)\}_{-\infty \leq r \leq \infty})$, then we have the continuous map id: $\mathbb{R} \to \mathbb{R}, x \mapsto x$.

We can pushforward cosheaves on \mathbb{R} to cosheaves on $\overline{\mathbb{R}}$ via id.

Definition. Given a cosheaf F on \mathbb{R} and $-\infty \leq r \leq \infty$ we define $\operatorname{id}_* F((-\infty, r)) = F((-\infty, r)).$

Similar to defining the pullback for sheaves, we take two steps to define the pullback of a cosheaf via id.

Definition. Given a cosheaf F on \mathbb{R} and an open subset $U \subseteq \mathbb{R}$ we define $\mathrm{id}^+ F(U) := F((-\infty, \sup U)).$

With this definition $id^+ F$ is merely a precosheaf for all we know. Yet we have the following.

Lemma. Given a cosheaf F on \mathbb{R} the precosheaf id⁺ F is a cosheaf on the poset of open intervals.

Proof. Let $(a, b) = \bigcup_{i \in I} (a_i, b_i)$. Without loss of generality we assume that I has a linear order such that $b_i \leq b_j$ for all $i \leq j$ and $a_i \leq a_j$ for all $i \leq j$ with $b_i = b_j$. Since $b = \sup_{i \in I} \sup(a_i, b_i) = \sup_{i \in I} b_i$ and since F is a cosheaf we have the coequalizer diagram

$$\coprod_{i < j} F((-\infty, b_i)) \xrightarrow[\sigma]{\sigma} F((-\infty, b_i)) \longrightarrow F((-\infty, b))$$

where $\sigma_{i,j}$ maps $F((-\infty, b_i))$ identical to $F((-\infty, b_i))$ and $\sigma'_{i,j}$ maps $F((-\infty, b_i))$ to $F((-\infty, b_j))$ via the induced inclusion. Now suppose we have i < j such that $b_i \leq a_j$, then since $[b_i, a_j]$ is compact we can find $i < i_1 < \ldots < i_k$ such that $[b_i, a_j] \subseteq \bigcup_{l=1}^k (a_{i_l}, b_{i_l})$ and such that this cover is minimal. If $i_k < j$ we set $\tau = \sigma_{i_k,j}, \tau' = \sigma'_{i_k,j}$ and if $j < i_k$ we set $\tau = \sigma_{j,i_k}, \tau' = \sigma'_{j,i_k}$. With this we have $\sigma'_{i,j} \circ \sigma_{i,j}^{-1} = \tau' \circ \tau^{-1} \circ \sigma'_{i_{k-1},i_k} \circ \sigma_{i_{k-1},i_k}^{-1} \circ \ldots \circ \sigma'_{i_1,i_2} \circ \sigma_{i,i_1}^{-1} \circ \sigma_{i,i_1}^{-1}$ and yet at the same time $b_j > a_{i_k}, b_{i_k} > a_j, b_{i_{k-1}} > a_{i_k}, \ldots, b_{i_1} > a_{i_2}$, and $b_i > a_{i_1}$, since $[b_i, a_j]$ is connected and the cover is minimal. Thus we may omit all terms from the leftmost coproduct in the above diagram where $b_i \leq a_j$ without loosing the property of it being a coequalizer diagram. Now for any i < j such that $b_i > a_j$ we have id⁺ $F((a_i, b_i) \cap (a_j, b_j)) = F((-\infty, b_i))$, hence we may replace the corresponding term in the leftmost coproduct by id⁺ $F((a_i, b_i) \cap (a_j, b_j))$. Similarly we may replace the terms in the middle and the term on the right to arrive at a coequalizer diagram of the form

$$\coprod_{i < j, b_i > a_j} \operatorname{id}^+ F((a_i, b_i) \cap (a_j, b_j)) \Longrightarrow \coprod_{i \in I} \operatorname{id}^+ F((a_i, b_i)) \longrightarrow \operatorname{id}^+ F((a, b)).$$

Now for i < j such that $b_i \leq a_j$ we have $\operatorname{id}^+ F((a_i, b_i) \cap (a_j, b_j)) = \operatorname{id}^+ F(\emptyset) = F(\emptyset) = \emptyset$ which does not contribute to the coequalizer and this implies the claim.

Definition. Given a cosheaf F on \mathbb{R} and an open subset $U \subseteq \mathbb{R}$ we define $\operatorname{id}^{-1} F(U) := \lim_{d \to 0} \operatorname{id}^{+} F((a, b)).$

By the previous lemma $\operatorname{id}^{-1} F$ as defined above is a cosheaf.

Remark. $\operatorname{id}^{-1} F$ as defined above is isomorphic to the cosheafification of $\operatorname{id}^+ F$ or the cosheaf associated to $\operatorname{id}^+ F$, see for example (Funk 1995, Theorem 6.3 and Remark 6.4).

Definition. Given a cosheaf F on \mathbb{R} we define a homomorphism η'_F of cosheaves from F to $\mathrm{id}^{-1}\mathrm{id}_* F$. Since both are cosheaves it suffices to define η'_F on open intervals. So for $-\infty \leq a < b \leq \infty$ we define η'_F from F((a,b)) to $\mathrm{id}^{-1}\mathrm{id}_* F((a,b)) = \mathrm{id}^+\mathrm{id}_* F((a,b)) = F((-\infty,b))$ to be the map induced by the inclusion $(a,b) \subseteq (-\infty,b)$.

Definition. Let F be a cosheaf on \mathbb{R} , then F is ascending if η'_F is an isomorphism.

(3) **Proposition.** id_* and id^{-1} form a pair of adjoint functors $\operatorname{id}_* \dashv \operatorname{id}^{-1}$ with unit η' and whose counit ε' is an isomorphism.

Proof. Let F be a cosheaf on \mathbb{R} , let G be a cosheaf on \mathbb{R} , and let g be a homomorphism from F to $\mathrm{id}^{-1} G$. Now suppose we have a morphism f from $\mathrm{id}_* F$ to G such that $(\mathrm{id}^{-1} f) \circ \eta'_F = g$, then for any $r \in \mathbb{R}$ we have $g_{(-\infty,r)} = ((\mathrm{id}^{-1} f) \circ \eta'_G)_{(-\infty,r)} = f_{(-\infty,r)}$ and this determines f. Now suppose f is defined by $g_{(-\infty,r)} = f_{(-\infty,r)}$ for any $r \in \mathbb{R}$ and we have $-\infty \leq a < b \leq \infty$, then $g_{(a,b)}$ is the same as $g_{(-\infty,b)}$ pre-composed with the map induced by inclusion from F((a,b)) to $F((-\infty,b))$ by naturality. But this is the same as $((\mathrm{id}^{-1} f) \circ \eta'_G)_{(a,b)}$ by definition of f, hence g and $(\mathrm{id}^{-1} f) \circ \eta'_G$ agree on a basis of \mathbb{R} .

By the above argument ε'_G is equal to $\operatorname{id}_{\operatorname{id}^{-1}G}$ when restricted to $\operatorname{id}_*\operatorname{id}^{-1}G((-\infty,r)) = \operatorname{id}^{-1}G((-\infty,r)) = G((-\infty,r))$, hence ε'_G is an isomorphism.

Corollary. The category of cosheaves on $\overline{\mathbb{R}}$ is equivalent to the reflective subcategory of ascending cosheaves on \mathbb{R} .

Proof. This follows with (Gabriel and Zisman 1967, Proposition 1.3 or http://ncatlab.org/nlab/show/reflective+subcategory#characterizations).

Ascending Spaces

Later we will make the ascending cosheaf $\operatorname{id}^{-1} \operatorname{id}_* \lambda_f$ for a continuous function f the cosheaf version of the join tree associated to f. As an intermediate step we show that we can obtain this cosheaf not only by post-composing λ with $\operatorname{id}^{-1} \operatorname{id}_*$ but also by pre-composing λ with another functor, the epigraph. This use of the epigraph in defining the join tree² is due to Morozov, Beketayev, and Weber (2013).

Definition. Let $f: X \to \mathbb{R}$ be a continuous map, it's *epigraph* is epi $f := \{(x, y) \in X \times \mathbb{R} \mid y \ge f(x)\}$. Further we define $\iota_f: \text{epi} f \to \mathbb{R}, (x, y) \mapsto y$ and $\kappa_f: X \to \text{epi} f, x \mapsto (x, f(x))$.

 $^{^2\}mathrm{Though}$ join trees are referred to as merge trees in the cited paper.

With these definitions ι defines a functor on topological spaces over \mathbb{R} with κ a natural transformation from id to ι .

- (4) **Definition.** A function $f: X \to \mathbb{R}$ is ascending if for all $r \in \mathbb{R}$ there is a continuous map $H_r: X \times [0,1] \to X$ such that $H_r(x,t) = x$ for all $0 \le t \le 1$ and $x \in X$ with $f(x) \ge r$ and such that $f(H_r(x,t)) = r + t(f(x) r)$ for all $0 \le t \le 1$ and $x \in X$ with $f(x) \le r$.
- (5) **Lemma.** For any continuous function $f: X \to \mathbb{R}$ the projection $\iota_f: \operatorname{epi} f \to \mathbb{R}$ is ascending.

Proof. For $r \in \mathbb{R}$ we set H_r : epi $f \times [0,1] \to$ epi $f, ((x,y),t) \mapsto (x, \max\{r+t(y-r), y\})$.

(6) **Lemma.** For any ascending function $f: X \to \mathbb{R}$ the cosheaf λ_f is ascending as well.

Proof. Given $-\infty \leq a < r < b \leq \infty$ we proof that the maps from $\Lambda(f^{-1}([r, b)))$ to $\Lambda(f^{-1}((a, b))) = \lambda_f((a, b))$ respectively $\Lambda(f^{-1}((-\infty, b))) = \lambda_f((-\infty, b))$ induced by the inclusions are bijections³. From this our claim follows. Since inclusions as maps of spaces always commute the two bijections commute with $(\eta' \circ \lambda)_f$ as well, hence $(\eta' \circ \lambda)_f$ is a bijection as a map from $\lambda_f((a, b))$ to $\lambda_f((-\infty, b)) = \mathrm{id}_* \lambda_f((-\infty, b)) = \mathrm{id}^+ \mathrm{id}_* \lambda_f((a, b)) = \mathrm{id}^{-1} \mathrm{id}_* \lambda_f((a, b))$. And since the open intervals of \mathbb{R} form a basis, the lemma follows.

Given any point $x \in f^{-1}((a, r))$ the map $t \mapsto H_r(x, t)$ defines a continuous path in $f^{-1}((a, b))$ from $H_r(x, 0) \in f^{-1}([r, b))$ to x, hence induced map from $\Lambda(f^{-1}([r, b)))$ to $\Lambda(f^{-1}((a, b))) = \lambda_f((a, b))$ is surjective. Now suppose $x, y \in$ $f^{-1}([r, b))$ lie in the same connected component C of $f^{-1}((a, b))$, then $H_r(C, 0)$ is connected since H_r is continuous. Further $x, y \in H_r(C, 0)$, hence the induced map from $\Lambda(f^{-1}([r, b)))$ to $\lambda_f((a, b))$ is injective. The induced map from $\Lambda(f^{-1}([r, b)))$ to $\lambda_f((-\infty, b))$ is a bijection by a similar argument.

Remark. The previous result remains valid if instead of λ we consider the pushforward of another cosheaf on X that maps inclusions of open sets in X that are homotopy equivalences to bijections of sets.

(7) **Lemma.** Given a continuous map $f: X \to \mathbb{R}$ the homomorphism $\mathrm{id}_*(\lambda \circ \kappa)_f$ from $\mathrm{id}_*\lambda_f$ to $\mathrm{id}_*(\lambda \circ \iota)_f$ is an isomorphism.

Proof. Given $b \in \mathbb{R} \cup \{\infty\}$ we show that $\kappa_f(f^{-1}((-\infty, b)) = \{(x, f(x))\}_{\{x \in X \mid f(x) < b\}}$ is a strong deformation retract of $\iota_f^{-1}((-\infty, b)) = \{(x, y) \in X \times (-\infty, b) \mid y \geq f(x)\}$. Then the result follows by a similar argument as the previous lemma. We define $R: \iota_f^{-1}((-\infty, b)) \times [0, 1] \rightarrow \iota_f^{-1}((-\infty, b)), ((x, y), t) \mapsto (x, f(x) + t(y - f(x))), \text{ then } R((x, y), 1) = (x, y) \text{ and } R((x, y), 0) = (x, f(x)) \text{ for all } (x, y) \in \iota_f^{-1}((-\infty, b)).$

³The space $f^{-1}([r, b))$ may not be locally connected. However we won't need this property.

(8) **Proposition.** The natural transformations $\eta' \circ \lambda$ and $\lambda \circ \kappa$ are isomorphic as objects in the category of functors from topological spaces over \mathbb{R} to cosheaves on \mathbb{R} under λ . In particular id⁻¹ id_{*} λ and $\lambda \circ \iota$ are naturally isomorphic.

Proof. Given $f: X \to \mathbb{R}$ we have the commutative diagram

By lemma 5 and lemma 6 the homomorphism $(\eta' \circ \lambda \circ \iota)_f$ is an isomorphism. And by lemma 7 we have that $\mathrm{id}^{-1} \mathrm{id}_*(\lambda \circ \kappa)_f$ is an isomorphism.

The Join Tree

The following definition⁴ is from (Morozov, Beketayev, and Weber 2013).

Definition. Let $f: X \to \mathbb{R}$ be a continuous map we define it's *join tree* to be the continuous map $(\rho \circ \iota)_f$ from $(\pi \circ \iota)_f(\operatorname{epi} f)$ to \mathbb{R} .

With this definition $\rho \circ \iota$ is an endofunctor on topological spaces over \mathbb{R} . Given a continuous map $f: X \to \mathbb{R}$ we have $(\pi \circ \iota)_f \circ \kappa_f = (\rho \circ \kappa)_f \circ \pi_f$, so in somewhat sloppy notation $(\pi \circ \iota) \circ \kappa = (\rho \circ \kappa) \circ \pi$ is a natural transformation from id to $\rho \circ \iota$. Similarly we have the function $(\gamma \circ \lambda \circ \iota)_f$ defined on the display space dis $(\lambda \circ \iota)_f$ of $(\lambda \circ \iota)_f$. And just as with ρ we have the natural transformation $(\eta \circ \iota) \circ \kappa = (\gamma \circ \lambda \circ \kappa) \circ \eta$ from id to $\gamma \circ \lambda \circ \iota$. The two constructions are related via the commutative diagram

given a function $f: X \to \mathbb{R}$. In the section on the Reeb space we considered the left triangle which suggests to replace the Reeb graph functor ρ and the natural transformation π by $\gamma \circ \lambda$ and η respectively. Now $\rho \circ \kappa$ yields a nice and classic map from any Reeb graph to the corresponding join tree, so our replacement of the Reeb graph functor ρ by $\gamma \circ \lambda$ is only complete, if also we can replace the join tree functor $\rho \circ \iota$ and the natural transformation $\rho \circ \kappa$ and if we can extend ϕ to a natural transformation from $\rho \circ \kappa$ to it's replacement. And here the commutative square on the right hand side, suggests we may take $\lambda \circ \gamma \circ \iota$ as a replacement for the join tree functor $\rho \circ \iota$ and to take $\gamma \circ \lambda \circ \kappa$ as a replacement for $\rho \circ \kappa$, since then we can extend ϕ by $\phi \circ \iota$ to a natural transformation from $\rho \circ \kappa$ to $\gamma \circ \lambda \circ \kappa$. We further note that by

⁴Though join trees are referred to as merge trees in the cited paper.

corollary 2 in that section the natural transformation $(\phi, \phi \circ \iota)$ from $\rho \circ \kappa$ to $\gamma \circ \lambda \circ \kappa$ is isomorphic to the natural transformation $(\eta \circ \rho, \eta \circ \rho \circ \iota)$ from $\rho \circ \kappa$ to $\gamma \circ \lambda \circ \rho \circ \kappa$, so our choice of replacements is the same as if we applied $\gamma \circ \lambda$ to the upper row in the diagram. And by proposition 8 we have a natural isomorphism from $(\gamma \circ \lambda \circ \iota)$ to $\gamma \operatorname{id}^{-1} \operatorname{id}_* \lambda$ that commutes with $\gamma \circ \lambda \circ \kappa$ and $\gamma \circ \eta' \circ \lambda$ so that we can use the following

Proposition. $\operatorname{id}_* \lambda$ and $\gamma \operatorname{id}^{-1}$ form a pair of adjoint functors $\operatorname{id}_* \lambda \dashv \gamma \operatorname{id}^{-1}$ with unit $(\gamma \circ \eta' \circ \lambda) \circ \eta$ and whose counit is an isomorphism.

Proof. The first statement follows from theorem 1, proposition 3 and the general statement that the two pairs of adjoint functors, when composed in the same way as in our claim, form again a pair of adjoint functors with the unit described as in the claim, see for example https://en.wikipedia.org/wiki/Adjoint_functors# Composition. And for the counit of this composed adjunction we have the formula $\mathrm{id}_* \varepsilon \mathrm{id}^{-1} \circ \varepsilon'$. By theorem 1 ε is an isomorphism, hence $\mathrm{id}_* \varepsilon \mathrm{id}^{-1}$ is an isomorphism and by proposition 3 ε' is an isomorphism and thus our claim follows.

Corollary. The category of cosheaves on $\overline{\mathbb{R}}$ is equivalent to the reflective subcategory of ascending cosheaf spaces over \mathbb{R} .

Proof. By Gabriel and Zisman (1967 Proposition 1.3 or http://ncatlab.org/nlab/ show/reflective+subcategory#characterizations) the category of cosheaves on $\overline{\mathbb{R}}$ is equivalent to the reflective subcategory of those spaces $f: X \to \mathbb{R}$ over \mathbb{R} for which $(\gamma \circ \eta' \circ \lambda)_f \circ \eta_f$ is an isomorphism. Now suppose this is the case for f, then f is isomorphic to $\gamma \operatorname{id}^{-1} \operatorname{id}_* \lambda$ which is in the image of γ and thus a cosheaf space, hence η_f is an isomorphism. From this it follows that $(\gamma \circ \eta' \circ \lambda)_f$ is an isomorphism as well, hence by proposition 8 $(\gamma \circ \lambda \circ \kappa)_f$ is an isomorphism. Now we consider the commutative diagram

Hence we have the retract⁵ $R := \eta_f^{-1} \circ (\gamma \circ \lambda \circ \kappa)_f^{-1} \circ (\eta \circ \iota)_f$ from ι_f to f. By lemma 5 ι_f is ascending, so given $r \in \mathbb{R}$ there is a map H_r as in definition 4. Now let $\tilde{H}_r : X \times [0,1] \to X$ be defined by $\tilde{H}_r(x,t) = r(H_r(\kappa_f(x),t))$ then \tilde{H}_r inherits the properties needed in order for f to be ascending. Conversely if f is an ascending cosheaf space over \mathbb{R} , then η_f is an isomorphism since f is a cosheaf space. And by lemma 6 λ_f is ascending, hence $(\eta' \circ \lambda)_f$ is an isomorphism.

In conclusion $(\gamma \circ \lambda \circ \iota)_f$ is an ascending cosheaf space over \mathbb{R} given a function f. It's cosheaf of connected components $(\lambda \circ \gamma \circ \lambda \circ \iota)_f$ is isomorphic to $(\lambda \circ \iota)_f$ by theorem 1. By lemma 5 and lemma 6 $(\lambda \circ \iota)_f$ is ascending, and thus we have an associated cosheaf $\mathrm{id}_*(\lambda \circ \iota)_f$ on \mathbb{R} via the adjunction $\mathrm{id}_* \dashv \mathrm{id}^{-1}$ by proposition 3. By lemma 7 this

⁵By a retract we mean a homomorphism R in the category of topological spaces over \mathbb{R} from ι_f to f such that $R \circ \kappa_f = id$.

cosheaf is isomorphic to $\operatorname{id}_* \lambda_f$ which is the cosheaf on \mathbb{R} associated to $\gamma \operatorname{id}^{-1} \operatorname{id}_* \lambda_f$ via the adjunction $\operatorname{id}_* \lambda \dashv \gamma \operatorname{id}^{-1}$. Now applying id^{-1} to $\operatorname{id}_* \lambda_f \cong \operatorname{id}_* (\lambda \circ \iota)_f$ recovers $(\lambda \circ \iota)_f$, hence $(\gamma \circ \lambda \circ \iota)_f$ and $\gamma \operatorname{id}^{-1} \operatorname{id}_* \lambda_f$ are isomorphic and thus a posteriori $\operatorname{id}_* \lambda_f$ is the cosheaf on \mathbb{R} associated to the ascending cosheaf space $(\gamma \circ \lambda \circ \iota)_f$ via the adjunction $\operatorname{id}_* \lambda \dashv \gamma \operatorname{id}^{-1}$. (Here the author allowed himself some redundance repeating the proof of proposition 8.)

From Sets to Algebras

For an integral domain A we consider the contravariant functor hom(_, A) from the category of sets to the category of commutative unital A-algebras. We note that since A is an integral domain the idempotents of hom(L, A) for any set L are precisely the maps from L to A with values in $\{0, 1\}$.

(9) Lemma. hom $(_, A)$ is pseudomonic.

Proof. hom(_, A) is faithful since for any map $m: L \to K$ and $k \in K$ we have $m^{-1}(k) = (\hom(m, A)(1_k))^{-1}(1)$ where $1_k := 1_{\{k\}}$ and $1_{K'}$ is the indicator function for any subset $K' \subseteq K$.

Now suppose φ is an isomorphism from $\hom(K, A)$ to $\hom(L, A)$ then φ induces a bijection between the non-zero centrally primitive idempotents of $\hom(K, A)$ and $\hom(L, A)$. Now the non-zero centrally primitive idempotents of $\hom(K, A)$ are just the maps of the form 1_k for some $k \in K$ and similarly for $\hom(L, A)$. Let $m: L \to K$ be the corresponding inverse bijection, then for any $c \in \hom(K, A)$ and $l \in L$ we have

$$\varphi(c) \cdot 1_l = \varphi(c \cdot 1_{m(l)}) = \varphi(c(m(l))1_{m(l)})$$
$$= c(m(l))\varphi(1_{m(l)}) = c(m(l))1_l$$
$$= \hom(m, A)(c) \cdot 1_l$$

and thus $\varphi = \hom(m, A)$.

Corollary. The functor $hom(_, A)$ induces an anti-equivalence between the category of sets and the replete image of $hom(_, A)$.

Corollary. For any category C the functor hom(_, A) induces an antiequivalence between the category of set-valued precosheaves on C and the category of presheaves with values in the replete image of hom(_, A).

Lemma. hom $(_, A)$ is full when restricted to the category of finite sets.

Proof. Let φ : hom $(K, A) \to \text{hom}(L, A)$ be a homomorphism with K and L finite, then $\varphi(1_k)$ is an idempotent for each $k \in K$ and thus we have subsets $L_k \subseteq L$ such that $\varphi(1_k) = 1_{L_k}$. Further we have $\sum_{l \in L} 1_l = 1 = \varphi(1) = \varphi(\sum_{k \in K} 1_k) = \sum_{k \in K} \varphi(1_k) = \sum_{k \in K} 1_{L_k}$ and thus $L = \bigcup_{k \in K} L_k$. Now for any $k, k' \in K$ with $k \neq k'$ we have $0 = \varphi(0) = \varphi(1_k \cdot 1_{k'}) = 1_{L_k} \cdot 1_{L'_k}$, hence L_k and $L_{k'}$ are disjoint. Altogether we obtain that the subsets L_k with $k \in K$ form a partition of L and we may define a map $m: L \to K$ such that m(l) = k for $l \in L_k$ for all $k \in K$. With this definition we have $\varphi = \text{hom}(m, A)$ since the two maps agree on a basis of hom(K, A).

The following example shows that we cannot assume the unrestricted functor $hom(_, A)$ to be full, if A is a general ring.

Example. We consider hom $(\mathbb{N}, \mathbb{Z}/p\mathbb{Z})$. Let \mathfrak{a} be the ideal of all $c \in \operatorname{hom}(\mathbb{N}, \mathbb{Z}/p\mathbb{Z})$ with $c^{-1}(0)$ cofinite. By Krull's theorem hom $(\mathbb{N}, \mathbb{Z}/p\mathbb{Z})$ has a maximal ideal \mathfrak{m} with $\mathfrak{a} \subset \mathfrak{m}$ and this gives a homomorphism of fields $i: \mathbb{Z}/p\mathbb{Z} \to \operatorname{hom}(\mathbb{N}, \mathbb{Z}/p\mathbb{Z})/\mathfrak{m}$. We further have $[c]^p - [c] = [c^p - c] = 0$ for all $[c] \in \operatorname{hom}(\mathbb{N}, \mathbb{Z}/p\mathbb{Z})/\mathfrak{m}$ and as $X^p - X$ is a polynomial of degree p it has at most p roots in hom $(\mathbb{N}, \mathbb{Z}/p\mathbb{Z})/\mathfrak{m}$ and thus i is a bijection. Now the canonical homomorphism from hom $(\mathbb{N}, \mathbb{Z}/p\mathbb{Z})/\mathfrak{m}$ to the quotient hom $(\mathbb{N}, \mathbb{Z}/p\mathbb{Z})/\mathfrak{m}$ yields a homomorphism $\varphi: \operatorname{hom}(\mathbb{N}, \mathbb{Z}/p\mathbb{Z}) \to$ hom $(\{1\}, \mathbb{Z}/p\mathbb{Z}) \cong \mathbb{Z}/p\mathbb{Z}$ which is not in the image of hom $(_, \mathbb{Z}/p\mathbb{Z})$, since for any map $m: \{1\} \to \mathbb{N}$ the element $1_{m(1)} \in \mathfrak{a} \subset \mathfrak{m}$ is mapped to $1 \in \mathbb{Z}/p\mathbb{Z}$ under hom $(m, \mathbb{Z}/p\mathbb{Z})$.

Remark. From a discussion similar to that of the previous lemma and example we can conclude that for sets K and L with L non-empty, the map from hom(L, K) to hom_{A-algebras}(hom(K, A), hom(L, A)) induced by hom $(_, A)$ is surjective if and only if all ideals⁶ \mathfrak{p} of hom(K, A), with hom $(K, A)/\mathfrak{p} \cong A$ as A-algebras, are of the form $\{c \in \text{hom}(K, A) \mid c(k) = 0\}$ for some $k \in K$.

Lemma. hom $(_, A)$ is continuous as a functor from the opposed category of sets to the category of A-algebras.

Proof. We argue that hom(_, A) is continuous as a functor to the category of commutative rings, the lemma then follows by a general result about limits in the under category. We fix a small category D. For an object X of any category C we denote by $\Delta(X)$ the constant functor from D to C that maps any object of D to X and any morphism of D to the identity. Let F be a functor from D to the category of sets, then we have the canonical natural transformation $t: F \to \Delta(\operatorname{colim}(F))$. Now hom($\Delta(\operatorname{colim}(F)), A$) = $\Delta(\operatorname{hom}(\operatorname{colim}(F), A))$ and by the universal property of the limit of hom($F(_), A$) we have a homomorphism of rings s: lim(hom($F(_), A$)) \to hom(colim(F), A) such that (hom($_, A$) $\circ t$) $\circ \Delta(s)$ is the canonical natural transformation from $\Delta(\operatorname{lim}(\operatorname{hom}(F(_), A)))$ to hom($F(_), A$). Now the forgetful functor from the category of commutative rings to the category of sets is continuous as well as hom($_, A$) $\circ t$ itself satisfy the universal property of the limit of hom($F(_), A$) as a functor to the category of sets, hence in the category of sets both (hom($_, A) \circ t$) $\circ \Delta(s)$ and hom($_, A) \circ t$ itself satisfy the universal property of the limit of hom($F(_), A$), and thus s is a bijection.

Corollary. If D is a set-valued cosheaf, then $hom(D(_), A)$ defines a sheaf with values in the category of A-algebras.

Example. For any locally path connected topological space X the singular homology $H_0(X)$ is naturally isomorphic to the free abelian group with basis $\Lambda(X)$ and by the universal property of the free ablian group the restriction from $\hom_{\mathbb{Z}}(H_0(X), A)$ to $\hom(\Lambda(X), A)$ is an isomorphism of A-modules. Further we have a natural isomorphism of A-modules from $H^0(X, A)$ to $\hom_{\mathbb{Z}}(H_0(X), A)$ by the universal coefficient theorem and since for any $x \in X$ and $\alpha, \beta \in H^0(X, A)$

⁶which are prime necessarily

we have

$$\begin{aligned} \langle \alpha \cup \beta, [x] \rangle &= \langle H^0(d, A)(\alpha \times \beta), [x] \rangle = \langle \alpha \times \beta, H_0(d)([x]) \rangle \\ &= \langle \alpha \times \beta, [(x, x)] \rangle = \langle \alpha \times \beta, [x] \times [x] \rangle \\ &= \langle \alpha, [x] \rangle \langle \beta, [x] \rangle, \end{aligned}$$

where $d: X \to X \times X, x \mapsto (x, x)$ is the diagonal map, the composition of these two isomorphisms is an ismorphism of A-algebras. Since the above identifications are natural in X, the functors $\hom(\Lambda(_), A)$ and $H^0(_, A)$ define isomorphic sheaves on any locally path connected topological space.

Given a continuous function $f: X \to M$ from a locally path connected topological space X to M, the sheaves $f_* \hom(\Lambda(_), A) \cong f_*H^0(_, A)$ and $\hom(\lambda_f(_), A)$ are identical. Bubenik, de Silva, and Scott (2014) define a generalized persistence module on the poset of open sets of M to be a functor to another category, thus λ_f is a generalized persistence module with values in the opposed category of sets and $f_*H^0(_, A)$ is a persistence module with values in the category of A-algebras. A functor from a category C to a category D then gives rise to a map from the generalized persistence modules with values in C to persistence modules with values in D, so in their language $f_*H^0(_, A)$ is the image of λ_f under the map induced by $\hom(_, A)$ and thus their theory can be used to relate these two constructions in the context of topological persistence.

References

Bubenik, Peter, Vin de Silva, and Jonathan Scott. 2014. "Metrics for Generalized Persistence Modules." *Foundations of Computational Mathematics*. Springer US, 1–31. doi:10.1007/s10208-014-9229-5.

de Silva, Vin, Elizabeth Munch, and Amit Patel. 2015. "Categorification of Reeb Graphs." *arXiv:1501.04147*. http://arxiv.org/abs/1501.04147.

Funk, J. 1995. "The Display Locale of a Cosheaf." *Cahiers Topologie Géom. Différentielle Catég.* 36 (1): 53–93.

Gabriel, P., and M. Zisman. 1967. *Calculus of Fractions and Homotopy Theory*. Ergebnisse Der Mathematik Und Ihrer Grenzgebiete, Band 35. Springer-Verlag New York, Inc., New York.

Morozov, Dmitriy, Kenes Beketayev, and Gunther Weber. 2013. "Interleaving Distance Between Merge Trees." In *Proceedings of TopoInVis*. http://www.mrzv.org/ publications/interleaving-distance-merge-trees/.