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The Unravelled Relative Homology Lattice

> For a finite set X, let Filtrx be the set of monotone maps
Ke: [0,00) — 2%, 6 +— K5 with {{x} | x € X} C Ko and K a simplicial complex
for any § > 0.

> Given a finite point cloud X C R" we then have Del,(X) € Filtrx.

» For K, € Filtrx the associated relative homology lattice [Deh55] in degree d € N

is
{(s,t) €0, oo)2 | s < t} — Vectr, (s,t) — Hg(K:, Ks; TF),

» which is closely related to the unravelled relative homology lattice
h(Ke): M — Vectg, u— h(u; K)

with M C R? a subposet shown in Fig. 1
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Figure 1: The poset M and the support for an indecomposable on the left. Unravelled
persistence diagrams of two point clouds on the right; from a sphere (red disc) and a torus
(green cross).



Vectorization as Hilbert Function

For a functor F: Ml — Vecty we have the Hilbert function
Hilb(F): M — R, u — dimg F(u).

In summary:
» R" D X +— Dels(X) € Filtrx
> Filtry > K, — h(K,) € Vet
> Vect) 5 F — Hilb(F) ¢ RM
For a finite point cloud X C R” we have Hilb(h(Dels(X)) € £2(M) and a factorization

Dely(X) Hilb(h(Dels(X))).

\/

Dgm, (Dels (X))

This way we obtain a Hilbert kernel on graded persistence diagrams [CEHO7]
implemented in persunraveltorch.


https://persunraveltorch.neocities.org/latest/

Results for the Hilbert Kernel

Binary classification of noisy point clouds from a
sphere and a torus with subsampling:

» 10 point clouds for training each

» 250 points per point cloud with 50% of noise
sampled uniformly from an enclosing cube
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» 25 subsamples of 30 points each
» Accuracy: 95%
» Cross entropy: 0.3

Figure 2: Subsamples of a noisy
point cloud; from a sphere (top)
and a torus (bottom).



Interpretation of Classifier

As the Hilbert kernel comes from an embedding into square-integrable functions
M — R, we have a straightforward interpretation of the SVC:
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Figure 3: A rendering of the SVCs normal to the separating hyperplane (left) and the
tessellation of M by homological degree (right).



Extension to Biplane

Given a function f: M — R we may define another function

{0,1} xM —R,
90w (),
(1L u) = (X))
on the biplane {0,1} x M, where ¥: M — M is a glide reflection corresponding to the
degree-shift for the unravelled relative homology lattice.
Extension of 7: {0,1} x M — R by zero yields a function f: {0,1} x R? — R.

We apply this to both, the Hilbert function of the unravelled relative homology lattice
and the unravelled rank invariant inspired by [Wan+23] to obtain a “biplane bitmap”
with two channels.



Biplane Cross-Correlation

We have a group action

(Z x R?) x ({0,1} x R?) — {0,1} x R?
((k,v),(d,u)) — T5(d, v+ u),

where

T:{0,1} x R? = {0,1} x R?,
(0, u) — (1, u),
(1, u) — (0, u — (shift, shift))

and shift is twice the width of M.

For V a Euclidean vector space and compactly supported w: Z x R? — V and
f:{0,1} x R? — R we have the cross-correlation

wxf:{0,1} xR? = V, p— w(g)f(g.p)dg.
ZxR?



Code for Biplane CNN

self.conv = nn.Sequential(
ConvBiplane( 2, 4, (3, 3, 4), shift = pixel columns ),
nn.RelLU(),
MaxPoolBiplane(2),
ConvBiplane( 4, 8, (3, 3, 4), shift = pixel columns // 2 ),
nn.RelLU(),
MaxPoolBiplane (2),
nn. Flatten ()

)

conv_out features = self.conv( mock biplane ).shape[1]

self.final layer = nn.Linear( conv_out features, nb_classes )



Results for Biplane CNN

Classification of noisy point clouds from a sphere, a
torus, and a swiss roll with subsampling:

» 60 point clouds for training each

» 250 points per point cloud with 50% of noise
sampled uniformly from an enclosing cube
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80 subsamples of 30 points each
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Accuracy after 30 epochs: 100%
» Cross entropy after 150 epochs: 0.0015

Figure 4: Filters of the first
biplane convolutional layer as a
pseudocolor image.



Inductive Biases

Definition (Flip-Invariance)

We say that a filter w: Z x R?> — V is flip-invariant if

w(k,(x,y)) =w(k,(y,x)) forall k€ Z and x,y € R.

Now let ¥ : R? — R? be the glide reflection with ¥(M) = M and corresponding to the
degree-shift for the unravelled relative homology lattice.

Definition (X-Alternation)
We say that a function g: {0,1} x R? — V is Y-alternating if gl{yxr2 =0 and

g(0,%(u)) = —g(0,u) forall u € R



Inclusion-Exclusion Principle

Theorem

Let g: {0,1} x R? — V be Y-alternating and let w: 7 x R? — V' be compactly
supported and flip-invariant.

Let K,, L, € Filtry and let fy, f1, f2, f3: {0,1} x R2 — R be the corresponding
extensions of Hilbert functions of unravelled relative homology lattices of Ko N L, K,
L, and K, U L,, respectively.

Then we have

(gwrh)p=(gwrh)n+(gwsh),—(gwrh)y.

Here the upshot is, that by imposing inductive biases, removing activation functions
and max pooling layers we obtain an invariant satisfying the inclusion-exclusion principle
in the same way that removal of activation functions from an ordinary neural network
yields an affine linear map.



API| Documentation

https://persunraveltorch.neocities.org/latest/
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