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The Unravelled Relative Homology Lattice

▶ For a finite set X , let FiltrX be the set of monotone maps
K• : [0,∞) → 2X , δ 7→ Kδ with {{x} | x ∈ X} ⊆ K0 and Kδ a simplicial complex
for any δ ≥ 0.

▶ Given a finite point cloud X ⊂ Rn we then have Del•(X ) ∈ FiltrX .
▶ For K• ∈ FiltrX the associated relative homology lattice [Deh55] in degree d ∈ N

is
{(s, t) ∈ [0,∞)2 | s ≤ t} → VectF, (s, t) 7→ Hd(Kt ,Ks ;F),

▶ which is closely related to the unravelled relative homology lattice

h(K•) : M → VectF, u 7→ h(u;K•)

with M ⊂ R2 a subposet shown in Fig. 1
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Figure 1: The poset M and the support for an indecomposable on the left. Unravelled
persistence diagrams of two point clouds on the right; from a sphere (red disc) and a torus
(green cross).



Vectorization as Hilbert Function
For a functor F : M → VectF we have the Hilbert function

Hilb(F ) : M → R, u 7→ dimF F (u).

In summary:
▶ Rn ⊃ X 7→ Del•(X ) ∈ FiltrX
▶ FiltrX ∋ K• 7→ h(K•) ∈ VectMF
▶ VectMF ∋ F 7→ Hilb(F ) ∈ RM

For a finite point cloud X ⊂ Rn we have Hilb(h(Del•(X )) ∈ L2(M) and a factorization

Del•(X ) Hilb(h(Del•(X ))).

Dgm•(Del•(X ))

This way we obtain a Hilbert kernel on graded persistence diagrams [CEH07]
implemented in persunraveltorch.

https://persunraveltorch.neocities.org/latest/


Results for the Hilbert Kernel

Binary classification of noisy point clouds from a
sphere and a torus with subsampling:
▶ 10 point clouds for training each
▶ 250 points per point cloud with 50% of noise

sampled uniformly from an enclosing cube
▶ 25 subsamples of 30 points each
▶ Accuracy: 95%
▶ Cross entropy: 0.3

Figure 2: Subsamples of a noisy
point cloud; from a sphere (top)
and a torus (bottom).



Interpretation of Classifier

As the Hilbert kernel comes from an embedding into square-integrable functions
M → R, we have a straightforward interpretation of the SVC:
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Figure 3: A rendering of the SVCs normal to the separating hyperplane (left) and the
tessellation of M by homological degree (right).



Extension to Biplane

Given a function f : M → R we may define another function

f̃ :


{0, 1} ×M → R,
(0, u) 7→ f (u),

( 1, u) 7→ f (Σ(u))

on the biplane {0, 1} ×M, where Σ: M → M is a glide reflection corresponding to the
degree-shift for the unravelled relative homology lattice.

Extension of f̃ : {0, 1} ×M → R by zero yields a function f̂ : {0, 1} × R2 → R.

We apply this to both, the Hilbert function of the unravelled relative homology lattice
and the unravelled rank invariant inspired by [Wan+23] to obtain a “biplane bitmap”
with two channels.



Biplane Cross-Correlation
We have a group action

(Z× R2)× ({0, 1} × R2) → {0, 1} × R2,

((k , v), (d , u)) 7→ T k(d , v + u),

where

T : {0, 1} × R2 → {0, 1} × R2,

(0, u) 7→ (1, u),

(1, u) 7→ (0, u − (shift, shift))

and shift is twice the width of M.
For V a Euclidean vector space and compactly supported ω : Z× R2 → V and
f̂ : {0, 1} × R2 → R we have the cross-correlation

ω ∗ f̂ : {0, 1} × R2 → V , p 7→
∫
Z×R2

ω(g)f̂ (g .p)dg .



Code for Biplane CNN

s e l f . conv = nn . S e q u e n t i a l (
ConvBip lane ( 2 , 4 , (3 , 3 , 4 ) , s h i f t = p ixe l_co lumns ) ,
nn . ReLU ( ) ,
MaxPoolBip lane ( 2 ) ,
ConvBip lane ( 4 , 8 , (3 , 3 , 4 ) , s h i f t = p ixe l_co lumns // 2 ) ,
nn . ReLU ( ) ,
MaxPoolBip lane ( 2 ) ,
nn . F l a t t e n ( )

)

conv_out_features = s e l f . conv ( mock_biplane ) . shape [ 1 ]

s e l f . f i n a l _ l a y e r = nn . L i n e a r ( conv_out_features , nb_c l a s s e s )



Results for Biplane CNN

Classification of noisy point clouds from a sphere, a
torus, and a swiss roll with subsampling:
▶ 60 point clouds for training each
▶ 250 points per point cloud with 50% of noise

sampled uniformly from an enclosing cube
▶ 80 subsamples of 30 points each
▶ Accuracy after 30 epochs: 100%
▶ Cross entropy after 150 epochs: 0.0015

Figure 4: Filters of the first
biplane convolutional layer as a
pseudocolor image.



Inductive Biases

Definition (Flip-Invariance)

We say that a filter ω : Z× R2 → V is flip-invariant if

ω(k , (x , y)) = ω(k, (y , x)) for all k ∈ Z and x , y ∈ R.

Now let Σ: R2 → R2 be the glide reflection with Σ(M) = M and corresponding to the
degree-shift for the unravelled relative homology lattice.

Definition (Σ-Alternation)

We say that a function g : {0, 1} × R2 → V is Σ-alternating if g |{1}×R2 ≡ 0 and

g(0,Σ(u)) = −g(0, u) for all u ∈ R2.



Inclusion-Exclusion Principle

Theorem
Let g : {0, 1} × R2 → V be Σ-alternating and let ω : Z× R2 → V be compactly
supported and flip-invariant.
Let K•, L• ∈ FiltrX and let f̂0, f̂1, f̂2, f̂3 : {0, 1} × R2 → R be the corresponding
extensions of Hilbert functions of unravelled relative homology lattices of K• ∩ L•, K•,
L•, and K• ∪ L•, respectively.
Then we have〈

g , ω ∗ f̂3
〉
L2 =

〈
g , ω ∗ f̂1

〉
L2 +

〈
g , ω ∗ f̂2

〉
L2 −

〈
g , ω ∗ f̂0

〉
L2 .

Here the upshot is, that by imposing inductive biases, removing activation functions
and max pooling layers we obtain an invariant satisfying the inclusion-exclusion principle
in the same way that removal of activation functions from an ordinary neural network
yields an affine linear map.



API Documentation

https://persunraveltorch.neocities.org/latest/

https://persunraveltorch.neocities.org/latest/
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