Bauer, Ulrich, Xiaoyin Ge, and Yusu Wang. 2014. “Measuring Distance Between Reeb Graphs.” In Proceedings of the Thirtieth Annual Symposium on Computational Geometry, 464:464–464:473. SOCG’14. New York, NY, USA: ACM. doi:10.1145/2582112.2582169.
Bauer, Ulrich, Elizabeth Munch, and Yusu Wang. 2015. “Strong Equivalence of the Interleaving and Functional Distortion Metrics for Reeb Graphs.” In 31st International Symposium on Computational Geometry (Socg 2015), edited by Lars Arge and János Pach, 34:461–75. Leibniz International Proceedings in Informatics (Lipics). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.461.
Bredon, Glen. 1993. Topology and Geometry. Graduate Texts in Mathematics. Springer New York. doi:10.1007/978-1-4757-6848-0.
Bröcker, Theodor, and Klaus Jänich. 1973. Einführung in Die Differentialtopologie. Springer-Verlag Berlin Heidelberg.
Bubenik, Peter, Vin de Silva, and Jonathan Scott. 2014. “Metrics for Generalized Persistence Modules.” Foundations of Computational Mathematics. Springer US, 1–31. doi:10.1007/s10208-014-9229-5.
Cohen-Steiner, David, Herbert Edelsbrunner, and John Harer. 2005. “Stability of Persistence Diagrams.” In Computational Geometry (SCG’05), 263–71. ACM, New York. doi:10.1145/1064092.1064133.
de Silva, Vin, Elizabeth Munch, and Amit Patel. 2016. “Categorified Reeb Graphs.” Discrete & Computational Geometry 55. doi:10.1007/s00454-016-9763-9.
de Silva, Vin, Elizabeth Munch, and Anastasios Stefanou. 2017. “Theory of Interleavings on \([0,\infty)\)-Actegories.” arXiv:1706.04095v1. http://arxiv.org/abs/1706.04095v1.
Di Fabio, Barbara, and Claudia Landi. 2014. “The Edit Distance for Reeb Graphs of Surfaces.” CoRR abs/1411.1544. http://arxiv.org/abs/1411.1544.
Erné, M., J. Koslowski, A. Melton, and G. E. Strecker. 1993. “A Primer on Galois Connections.” In Papers on General Topology and Applications (Madison, WI, 1991), 704:103–25. Ann. New York Acad. Sci. New York Acad. Sci., New York. doi:10.1111/j.1749-6632.1993.tb52513.x.
Fluhr, Benedikt. 2017. “Generic 1D-Interleavings.” Poster. Hausdorff Research Institute for Mathematics; Spring School on Applied and Computational Algebraic Topology https://www.him.uni-bonn.de/programs/future-programs/future-trimester-programs/acat-2017/spring-school/schedule/ April 25th. http://bfluhr.com/bucket/poster-acat01.pdf.
Funk, J. 1995. “The Display Locale of a Cosheaf.” Cahiers Topologie Géom. Différentielle Catég. 36 (1): 53–93.
Hunter, J. D. 2007. “Matplotlib: A 2D Graphics Environment.” Computing in Science & Engineering 9 (3). IEEE COMPUTER SOC: 90–95. doi:10.1109/MCSE.2007.55.
Milnor, J. 1963. Morse Theory. Based on Lecture Notes by M. Spivak and R. Wells. Annals of Mathematics Studies, No. 51. Princeton University Press, Princeton, N.J.
Morozov, Dmitriy, Kenes Beketayev, and Gunther Weber. 2013. “Interleaving Distance Between Merge Trees.” In Proceedings of TopoInVis. http://www.mrzv.org/publications/interleaving-distance-merge-trees/.
Saikia, H., H.-P. Seidel, and T. Weinkauf. 2014. “Extended Branch Decomposition Graphs: Structural Comparison of Scalar Data.” Computer Graphics Forum (Proc. EuroVis) 33 (3): 41–50. http://tinoweinkauf.net/publications/abssaikia14a.html.
Stacks Project Authors, The. 2017. “Stacks Project.” http://stacks.math.columbia.edu.